noun

definition

A variety of lettuce with long, crisp leaves.

Examples of cos in a Sentence

Sulphides of cobalt of composition C04S3, CoS, C03S4, C02S3 and CoS 2 are known.

The potential due to a small magnet of moment M, at a point whose distance from the centre of the magnet is r, is V=M cos 0/r 2, (io) where 0 is the angle between r and the axis of the magnet.

The most important inlet, the Ceramic Gulf, or Gulf of Cos, extends inland for 70 m., between the great mountain promontory terminating at Myndus on the north, and that which extends to Cnidus and the remarkable headland of Cape Krio on the south.

Of these the most celebrated are Rhodes and Cos.

Its cartesian equation, when the line joining the two fixed points is the axis of x and the middle point of this line is the origin, is (x 2 + y 2)2 = 2a 2 (x 2 - y 2) and the polar equation is r 2 = 2a 2 cos 20.

When passed with carbon dioxide through a red-hot tube it yields carbon oxysulphide, COS (C. Winkler), and when passed over sodamide it yields ammonium thiocyanate.

The polar equation is r= I -f - 2 cos 0 and the form of the curve is shown in the figure.

Its control of the Aegean was, however, contested not without success by the Antigonids, who won the two great sea-fights of Cos (c. 256) and Andros (227), and wrested the overlordship of the Cyclades from the Ptolemies.

The siege, which was finally conducted by the sultan in person, was successful after six months' duration; the forts of Cos and Budrum were also taken.

Of the quadratic axe+2bxy+cy2, he discovered the two invariants ac-b 2, a-2b cos w+c, and it may be verified that, if the transformed of the quadratic be AX2=2BXY+CY2, sin w 2 AC -B 2 =) (ac-b2), sin w A-2B cos w'+C = (sin w'1 2(a - 2bcosw+c).

If r and r' make angles 0 and 0 with the axis, it is easily shown that the equation to a line of force is cos 0 - cos B'= constant.

If F T is the force along r and F t that along t at right angles to r, F r =X cos 0+ Y sin 0=M 2 cos 0, F t = - X sin 0+ Y cos 0 = - r 3 sin 0.

For a point in the line OY bisecting the magnet perpendicularly, 0 =42 therefore cos 0 =0, and the point D is at an infinite distance.

Let 0 be the angle which the standard magnet M makes with the meridian, then M'/R = sin 0, and M/R = cos 0, whence M' = M tan 0.

The strength of the induced current is - HScosO/L, where 0 is the inclination of the axis of the circuit to the direction of the field, and L the coefficient of self-induction; the resolved part of the magnetic moment in the direction of the field is equal to - HS 2 cos 2 6/L, and if there are n molecules in a unit of volume, their axes being distributed indifferently in all directions, the magnetization of the substance will be-3nHS 2 /L, and its susceptibility - 3S 2 /L (Maxwell, Electricity and Magnetism, § 838).

The middle element alone contributes without deduction; the effect of every other must be found by introduction of a resolving factor, equal to cos 0, if 0 represent the difference of phase between this element and the resultant.

If the primary wave at 0 be cos kat, the effect of the secondary wave proceeding from the element dS at Q is dS 1 dS - p cos k(at - p+ 4 A) = - -- sin k(at - p).

The amplitude of the light at any point in the axis, when plane waves are incident perpendicularly upon an annular aperture, is, as above, cos k(at-r 1)-cos k(at-r 2) =2 sin kat sin k(r1-r2), r2, r i being the distances of the outer and inner boundaries from the point in question.

The maxima occur when u=tan u, (4), and then sin 2 u/u 2 = cos 2 u (5).

When, as in the application to rectangular or circular apertures, the form is symmetrical with respect to the axes both of x and y, S = o, and C reduces to C = ff cos px cos gy dx dy,.

Trans., 1834) in his original investigation of the diffraction of a circular object-glass, and readily obtained from (6), is z z 3 25 27 J1(z) = 2 2 2.4 + 2 2.4 2.6 2 2.4 2.6 2.8 + When z is great, we may employ the semi-convergent series Ji(s) = A/ (7, .- z)sin (z-17r) 1+3 8 1 ' 6 (z) 2 3.5.7.9.1.3.5 5 () 3 1 3.5.7.1 1 3 cos(z - ?r) 8 ' z (z) 3.5.7.9.11.1.3.5.7 1 5 + 8.16.24.32.40 (z

A similar expression can be found for Q'P - Q"A; and thus, if Q' A =v, Q' AO = where v =a cos (0", we get - - -AQ' = a sin w (sin 4 -sink") - - 8a sin 4 w(sin cktan 4 + sin 'tan cl)').

If we put for shortness 7 for the quantity under the last circular function in (I), the expressions (i), (2) may be put under the forms u sin T, v sin (T - a) respectively; and, if I be the intensity, I will be measured by the sum of the squares of the coefficients of sin T and cos T in the expression u sin T +v sin (T - a), so that I =u 2 +v 2 +2uv cos a, which becomes on putting for u, v, and a their values, and putting f =Q .

Only in this case can cos {p' +(m- -27th/Af) f } retain the constant value - I throughout the integration, and then only when and a = 27Th/A f (8) cos p'=- 1 ..

The integrated intensity, I', or 21-14 +2 cos pw, is thus I' =27rh,.

By separation of real and imaginary parts, C =M cos 27rv 2 +N sin 27rv2 1 S =M sin 27rv 2 - N cos 27rv2 where 35+357.9 N _ 7rv 3 7r 3 v 7 + 1.3 1.3.5.7 1.3.5.7.9.11 These series are convergent for all values of v, but are practically useful only when v is small .

Comparing the expressions for C, S in terms of M, N, and in terms of G, H, we find that G = z (cos u+sin u)-M, H = z (cos u-sin u) +N.

Retaining only the real part of (16), we find, as the result of a local application of force equal to DTZ cos nt (17), the disturbance expressed by TZ sin 4, cos(nt - kr) ?

The force operative upon the positive half is parallel to OZ, and of amount per unit of area equal to - b 2 D = b 2 kD cos nt; and to this force acting over the whole of the plane the actual motion on the positive side may be conceived to be due.

According to (18), the effect of the force acting at dS parallel to OZ, and of amount equal to 2b2kD dS cos nt, will be a disturbance - dS sin cos (nt - kr) (20), regard being had to (12).

By applying the method of the differential calculus, we obtain cos i= { (µ 2 - 1)/(n24-2n)} as the required value; it may be readily shown either geometrically or analytically that this is a minimum.

Of these certainly many are falsely ascribed to the historical Hippocrates of Cos; others are almost as certainly rightly so ascribed; others again are clearly works of his school, whether from his hand or not.

There are clearly two schools represented in the collection - that of Cnidus in a small proportion, and that of Cos in far the larger number of the works.

The school of Cnidus, as distinguished from that of Cos, of which Hippocrates is the representative, appears to have differed in attaching more importance to the differences of special diseases, and to have made more use of drugs.

Herophilus (335-280 B.C.) was a Greek of Chalcedon, a pupil of the schools both of Cos and of Cnidus.

The Erasistrateans paved the way for what was in some respects the most important school which Alexandria produced, that known as the empiric, which, though it recognized no master by name, may be considered to have been founded by Philinus of Cos (280 B.C.), a pupil of Herophilus; but Serapion, a great name in antiquity, and Glaucias of Tarentum, who traced the empirical doctrine back to the writings of Hippocrates, are also named among its founders.

I n a straight uniform current of fluid of density p, flowing with velocity q, the flow in units of mass per second across a plane area A, placed in the current with the normal of the plane making an angle 0 with the velocity, is oAq cos 0, the product of the density p, the area A, and q cos 0 the component velocity normal to the plane.

Generally if S denotes any closed surface, fixed in the fluid, M the mass of the fluid inside it at any time t, and 0 the angle which the outward-drawn normal makes with the velocity q at that point, dM/dt = rate of increase of fluid inside the surface, (I) =flux across the surface into the interior _ - f f pq cos OdS, the integral equation of continuity.

Consider the motion given by w=U(z+a2/z), (I) 4,=U(r+- r) cos 0= U + a1x, so that (2) = U (r-)sin 0= U(i -¢) y.

If the liquid is reduced to rest at infinity by the superposition of an opposite stream given by w = - Uz, we are left with w = Ua2/z, (6) =U(a 2 /r) cos 0= Ua2x/(x2+y2), (7) 4, = -U(a 2 /r) sin 0= -Ua2y/( x2+y2), (8) giving the motion due to the passage of the cylinder r=a with velocity U through the origin 0 in the direction Ox.

When the cylinder r =a is moved with velocity U and r =b with velocity U 1 along Ox, = U b e - a,1 r +0 cos 0 - U ib2 - 2 a, (r +Q 2 ') cos 0, = - U be a2 a2 (b 2 - r) sin 0 - Uib2 b1)a, (r - ¢2 sin 0; b and similarly, with velocity components V and V 1 along Oy a 2 b2 ?= Vb,_a,(r+r) sin g -Vi b, b2 a, (r+ 2) sin 0, (17) = V b, a2 a, (b2 r) cos 0+Vi b, b, a, (r- ¢ 2) cos h; (18) and then for the resultant motion z 2zz w= (U 2 + V2)b2a a2U+Vi +b a b a2 U z Vi -(U12+V12) b2 z a2b2 Ui +VIi b 2 - a 2 U1 +Vii b 2 - a 2 z The resultant impulse of the liquid on the cylinder is given by the component, over r=a (§ 36), X =f p4 cos 0.ad0 =7rpa 2 (U b z 2 + a 2 Uib.2bz a2); (20) and over r =b Xi= fp?

Taking two planes x = =b, and considering the increase of momentum in the liquid between them, due to the entry and exit of liquid momentum, the increase across dy in the direction Oy, due to elements at P and P' at opposite ends of the diameter PP', is pdy (U - Ua 2 r2 cos 20 +mr i sin 0) (Ua 2 r 2 sin 2 0+mr 1 cos 0) + pdy (- U+Ua 2 r 2 cos 2 0 +mr1 sin 0) (Ua 2 r 2 sin 2 0 -mr 1 cos 0) =2pdymUr '(cos 0 -a 2 r 2 cos 30), (8) and with b tan r =b sec this is 2pmUdo(i -a 2 b2 cos 30 cos 0), (9) and integrating between the limits 0 = 27r, the resultant, as before, is 27rpmU.

Consider the streaming motion given by w =m =a+si, (5) 4=m ch (n -a)cos(-0), p=m sh(n-a)sin(-13).

Example 3.-Analysing in this way the rotation of a rectangle filled with liquid into the two components of shear, the stream function 1//1 is to be made to satisfy the conditions v 2 /1 =0, 111+IRx 2 = IRa 2, or /11 =o when x= = a, +b1+IRx 2 = I Ra2, y ' 1 = IR(a 2 -x 2), when y = b Expanded in a Fourier series, 2 232 2 cos(2n+ I)Z?rx/a a -x 7r3 a Lim (2n+I) 3 ' (1) so that '?"

The polar equation of the cross-section being rI cos 19 =al, or r + x = 2a, (3) the conditions are satisfied by = Ur sin g -2Uairi sin IB = 2Uri sin 10(14 cos 18a'), (4) 1J/ =2Uairi sin IO = -U1/ [2a(r-x)], (5) w =-2Uaiz1, (6) and the resistance of the liquid is 2lrpaV2/2g.

Similarly, with the function (19) (2n+ I) 3 ch (2n+ I) ITrb/a' (2) Changing to polar coordinates, x =r cos 0, y = r sin 0, the equation (2) becomes, with cos 0 =µ, r'd + (I -µ 2)-d µ = 2 ?-r3 sin 0, (8) of which a solution, when = o, is = (Ar'+) _(Ari_1+) y2,, ?

In the absolute path in space cos Ili = (2 - 3 sin 2 6)/1/ (4-sin 2 6), and sin 3 B = (y 3 -c 2 y)/a 3, (19) which leads to no simple relation.

Denoting the cross-section a of a filament by dS and its mass by dm, the quantity wdS/dm is called the vorticity; this is the same at all points of a filament, and it does not change during the motion; and the vorticity is given by w cos edS/dm, if dS is the oblique section of which the normal makes an angle e with the filament, while the aggregate vorticity of a mass M inside a surface S is M - l fw cos edS.

If there are more B corners than one, either on xA or x'A', the expression for i is the product of corresponding factors, such as in (5) Restricting the attention to a single corner B, a = n(cos no +i sin 110) _ (b-a'.0-a) +1!

Taking Ox along OS, the Stokes' function at P for the source S is p cos PSx, and of the source H and line sink OH is p(a/f) cos PHx and - (p/a) (PO - PH); so that = p (cos PSx+f cos PHx PO a PH), (q) and Ili = -p, a constant, over the surface of the sphere, so that there is no flow across.

Disclaimer

Scrabble® Word Cheat is an incredibly easy-to-use tool that is designed to help users find answers to various word puzzles. With the help of Scrabble Word Cheat, you can easily score in even the most difficult word games like scrabble, words with friends, and other similar word games like Jumble words, Anagrammer, Wordscraper, Wordfeud, and so on. Consider this site a cheat sheet to all the word puzzles you have ever known.

Please note that SCRABBLE® is a registered trademark. All intellectual property rights for the game are owned by Hasbro Inc in the U.S.A and Canada. J.W. Spear & Sons Limited of Maidenhead, Berkshire, England (a subsidiary of Mattel Inc.) reserves the rights throughout the rest of the world. Also, Mattel and Spear are not affiliated with Hasbro. Words with Friends is a trademark of Zynga with Friends.

Scrabblewordcheat.com is not affiliated with SCRABBLE®, Mattel Inc, Hasbro Inc, Zynga with Friends, or Zynga Inc in any way. This site is only for entertainment and is designed to help you crack even the most challenging word puzzle. Whenever you are stuck at a really difficult level of Scrabble or words with friends, you will find this site incredibly helpful. You may also want to check out: the amazing features of our tool that enables you to unscramble upto 15 letters or the advanced filters that lets you sort through words starting or ending with a specific letter.

Top Search